Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow

Author:

Glezer B.1,Moon H. K.1,Kerrebrock J.2,Bons J.2,Guenette G.2

Affiliation:

1. Solar Turbines Incorporated, San Diego, CA

2. Massachusetts Institute of Technology, Cambridge, MA

Abstract

This paper presents experimental results for heat transfer in swirling internal flow, obtained in two ways. A test rig simulated a rotating blade’s leading edge internal passage with heated walls and screw-shaped cooling swirl generated by flow introduced through discrete tangential slots. Spatially resolved variations of the surface heat transfer coefficients were measured in the rotating rig using an IR radiometer. A blade tested in the actual engine environment had similar geometry of the leading edge cooling passage. The blade surface temperatures were mapped in the engine with thermal paints and compared with a traditional convective cooling configuration. The data from the rotating rig and engine measurements are also compared with non-rotating heat transfer results obtained in the hot cascade using a traversing pyrometer at a realistic wall-to-coolant temperature ratio. The results are presented for realistic rotational numbers, ranging from 0 to 0.023, and for representative Reynolds number of 20,000 based on the channel diameter. The effect of Coriolis forces is evident with the change of direction of the rotation. A slight negative influence of the crossflow, which increased toward the outer radius of the channel, was recorded in the rig test results. The results presented will assist in better understanding of the screw-shaped swirl cooling technique, providing the next step toward the application of this highly-effective internal cooling method for the leading edges of turbine blades.

Publisher

American Society of Mechanical Engineers

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3