Numerical investigation on conjugate heat transfer characteristics of film and vortex composite cooling under rotating conditions

Author:

Wang Jiefeng1,Li Jianwu1,Zhao Yujuan1,Li Jianming1,Li Rong1,Li Liang12ORCID

Affiliation:

1. 1School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China

2. 2Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment, Xi’an, China

Abstract

This paper numerically investigates the vortex and film composite cooling performance under rotating conditions. The cooling performance of the adiabatic and conjugate models is compared under the range of 0–4000 r/min. The conjugate model contains the fluid region: the cascade, the film holes, and the internal vortex cooling chamber, as well as the solid region: the blade material between the internal flow and the mainstream flow. The adiabatic model is established by removing the blade material part in the conjugate model. The dimensionless temperature θ inversely proportional to the temperature is adopted. Results show that the blade leading edge temperature doesn’t vary linearly with the rotating speed. The stagnation line of the mainstream flow on the blade leading edge moves from the pressure surface to the suction surface. The maximum θ appears at 1500 r/min when the stagnation line stays certainly on the row of film holes located on the pressure surface and is 7.86% higher than the minimum θ. The minimum θ appears at 2500 r/min when the stagnation line stays on the position between the rows of film holes. The distribution of θ is much uniform, and the value of θ is much higher in the conjugate cases than the adiabatic cases due to the heat conduction through the blade material. The highest aerodynamic parameter appears at 2000 r/min due to its relatively low blade leading edge temperature and low coolant consumption and is 41% higher than the aerodynamic parameter at 0 r/min.

Funder

National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3