Measurement of Heat Transfer Coefficient Distributions and Flow Field in a Model of a Turbine Blade Cooling Passage With Tangential Injection

Author:

Ling John P. C. W.1,Ireland Peter T.1,Harvey Neil W.2

Affiliation:

1. University of Oxford, Oxford, UK

2. Rolls Royce Plc, Derby, UK

Abstract

In certain regions of turbine aerofoils, cooling system designers need to cool the blades with convection systems that provide high heat transfer coefficients. The present research has investigated a circular cooling passage with tangential injection suitable for a blade leading edge. The heat transfer coefficients are measured using the conventional transient heat transfer, liquid crystal technique. The results are compared to the data from steady state experiments performed by Hedlund et al. [1]. The cooling system performance is compared in detail to average data from earlier tangential injection experiments and to local heat transfer coefficient expected from a normal impingement system. The vortex flow field was also studied by numerical prediction and near-wall velocity measurements. The investigation of the flow structure has led to understanding of flow mechanisms responsible for the high heat transfer coefficient. The vortex flow field was also investigated using computational fluid dynamics and with hot wire anemometry. The latter near wall measurements were combined with the law of the wall and Colburn analogy to validate the flow and heat transfer measurements.

Publisher

ASMEDC

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3