The Influence of Trapped Fluids on High Speed Rotor Vibration

Author:

Ehrich F. F.1

Affiliation:

1. Turbomachinery and Mechanical Systems Engineering Operation, Flight Propulsion Division, General Electric Company, West Lynn, Mass.

Abstract

Fluids are often introduced accidentally and trapped inside of high speed rotors. This has given concern as to the possible deleterious effects of such trapped fluids on the system’s vibration characteristics. Trapped fluids will induce asynchronous vibratory motion of high speed rotors at supercritical rotational speeds. This tendency is examined in analytic detail. Assuming that the circumferential velocity of the trapped fluid varies linearly with radius, the generalized shape of the fluid film is derived. Integrating the fluid pressure on the cavity walls gives the net fluid forces and permits computation of whirl frequency and whirl amplitude as functions of rotative speed. Generalized plots are given of the film geometry, of the rotative speed at which asynchronous whirl starts, and of the induced whirl speed. General response curves are also given, showing whirl amplitude as a function of rotative speed. The detailed results indicate that whirl occurs at a rotative speed approximately double the induced whirl frequency (as happens with many rotor whirl mechanisms). Higher values of the system parameter g result in somewhat lower whirl onset speeds. The whirl velocity is approximately equal to the rotor critical speed, or slightly lower for large masses of trapped fluid. Rotor whirl amplitude increases sharply with rotative speed above onset speed until a limiting condition where the fluid film (and analytic solution) break down, at a rotative speed about 6 percent above onset speed. Trapped fluids will also influence the normal synchronous vibrations induced by rotor unbalance. Analyses of a simple model of synchronous, solid body rotation are made which give exact solutions for the condition of a fully welted cavity periphery, and give approximate solutions for a partially welted periphery. It is concluded that the trapped fluid generally reduces the critical frequency, reduces critical amplitude, and reduces high speed (supercritical) amplitude. The effect is quite small with a partially welted circumference, but is surprisingly large in the case where the periphery of the cavity stays fully welted at maximum vibration amplitude. In this case, the rotor acts as if the cavity were entirely full of fluid, even though actual trapped fluid may fill only a small fraction of the cavity volume! Significant reductions in critical frequencies and amplitude are thereby observed. In the case of systems that are partially welted in going through their resonance peak, a “rightward leaning” resonance peak is observed which results in jump phenomena and hysteresis in amplitude on accelerating and decelerating through the peak.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3