Role of Blade Passage Flow Structurs in Axial Compressor Rotating Stall Inception

Author:

Hoying D. A.1,Tan C. S.2,Vo Huu Duc2,Greitzer E. M.3

Affiliation:

1. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433

2. Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

3. United Technologies Research Center, East Hartford, CT 06108

Abstract

The influence of three-dimensional flow structures within a compressor blade passage has been examined computationally to determine their role in rotating stall inception. The computations displayed a short length-scale (or spike) type of stall inception similar to that seen in experiments; to the authors’ knowledge this is the first time such a feature has been simulated. A central feature observed during the rotating stall inception was the tip clearance vortex moving forward of the blade row leading edge. Vortex kinematic arguments are used to provide a physical explanation of this motion as well as to motivate the conditions for its occurrence. The resulting criterion for this type of stall inception (the movement of the tip clearance vortex forward of the leading edge) depends upon local flow phenomena related to the tip clearance with the implication that for this and possibly other stall mechanisms the flow structure within the blade passages must be addressed to explain the stability of an axial compression system that exhibits such short length-scale disturbances.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3