Microstructure and Tribological Performance of Alumina–Aluminum Matrix Composites Manufactured by Enhanced Stir Casting Method

Author:

Sardar Santanu1,Karmakar Santanu Kumar2,Das Debdulal3

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India

2. Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India e-mails: ;

3. Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India

Abstract

Al–Zn–Mg–Cu matrix composites reinforced with (0–20 wt %) Al2O3 particles have been manufactured by enhanced stir casting technique. Microstructural characterization of cast composites by optical, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDS) and X-ray diffraction (XRD) reveals homogeneous distribution of reinforcements in Al-alloy matrix with MgZn2 plus Al2CuMg intermetallics. With increasing particle content, hardness of composite rises considerably in spite of marginal rise in porosity. Tribological performance under two-body abrasion has been studied considering central composite design (CCD) apart from identification of mechanisms of wear via characterizations of abraded surfaces and debris. Composites exhibit significantly reduced wear rate and coefficient of friction (COF) irrespective of test conditions, since mechanisms of abrasion are observed to change from microplowing and microcutting in unreinforced alloy to mainly delamination with limited microplowing in composites. Effects of four independent factors (reinforcement content, load, abrasive grit size, and sliding distance) on wear behavior have been evaluated using response surface-based analysis of variance (ANOVA) technique. Dominant factors on both wear rate and COF are identified as reinforcement content followed by grit size and load. Combined optimization of wear rate and COF employing multiresponse optimization technique with desirability approach as well as regression models of individual responses have been developed, and their adequacies are validated by confirmatory tests. The developed mathematical models provide further insight on the complex interactions among wear performances of the selected materials and variables of abrasive system. The optimum amount of reinforcement is identified at around 15 wt % for achieving the lowest values of both wear rate and COF.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3