Dry Sliding Wear Performances of AA5052 Hybrid Composite Brake Disc Materials Reinforced With In Situ Synthesized TiC and Multi-Walled Carbon Nanotube

Author:

Samal Priyaranjan12,Vundavilli Pandu R.3

Affiliation:

1. Indian Institute of Technology Bhubaneswar School of Mechanical Sciences, , Odisha 752050 , India ;

2. Koneru Lakshmaiah Education Foundation Department of Mechanical Engineering, , Vaddeswaram, Andhra Pradesh 522302 , India

3. Indian Institute of Technology Bhubaneswar School of Mechanical Sciences, , Odisha 752050 , India

Abstract

Abstract In this research, aluminum alloy AA5052-based hybrid metal matrix composites (MMCs) were fabricated using in situ synthesized titanium carbide (TiC) and ex situ multi-walled carbon nanotube (MWCNT) as reinforcements using the liquid metallurgy route. The wear characteristics of the aluminum hybrid MMCs were analyzed under the synergistic effects of TiC and multi-walled CNT. Pin-on-disc wear setup was utilized for the experimental investigation where the hybrid composite is considered as the disc, and the traditional brake pad material is treated as the pin. The parameters, i.e., sliding distance, applied load, sliding velocity, and reinforcement content, are treated as inputs, whereas the wear-rate and coefficient of friction are considered output variables for the tribological experimentation. The influence of various input process parameters on the tribological behavior of the fabricated samples was investigated. The plastic deformation attained by the base alloy exhibited delamination, which indicates adhesive wear, whereas the composites exhibited abrasive nature as analyzed from the wear surface morphology. The wear debris was characterized by flake-sized, corrugated, and oxidized by the microstructural study.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3