Oilstone Processing and Its Impact on the Surface Texture of Cylinder Bore

Author:

Zhang Xin1,Liu Xijuan2,Zhang Xueping1

Affiliation:

1. Shanghai Jiao Tong University School of Mechanical Engineering, , Shanghai 200240 , China

2. Shanghai Dianji University Mechanical School, , Shanghai 201306 , China

Abstract

AbstractHoning is one of the abrasive-based machining processes to remove material through the asperity interaction between numerous stochastic grains distributed on oilstone (also called honing stone) and workpiece. Therefore, the oilstone surface topography characterized by grain morphology, size, posture and position distribution, protrusion heights and etc. is of great significance to understand honing mechanism in terms of establishing an accurate kinematic model and further analyzing the oilstone property's impact on honing process and honed surface texture characteristics including groove density, roughness heights, and plateau/valley amplitudes. Conventionally, two typical approaches have been employed to establish the surface topography of abrasive-based cutting tools: experimentally microscopic observation and backward modeling/simulation from the assumed ideal distribution laws such as Gaussian or uniform distribution for stochastic grain characteristics. The first method is usually time-consuming and only measures surface topography within rather small area, whereas the second one is highly dependent on the authenticity of assumed statistical distribution laws. To overcome these weaknesses, the research proposed a functional forward method (FFM) to accurately predict surface topography of oilstone based on simulating its manufacturing processes in succession to avoid distributional assumptions and geometrical simplification. The methodology takes into consideration five important stochastic characteristics of oilstone including grain morphology, size, posture, position distribution, and grain wear during honing process, to guarantee the credibility, authenticity, and generality of the surface topography generated from honing. Based on the oilstone surface topography, the kinematic simulation method (KISM) was applied to analyze the honed surface texture characteristics of cylinder bore with oilstone samples under different stirring times. Therefore, the methodology bridges oilstone manufacturing parameters, oilstone surface topography, and further the honed surface texture to provide a fresh insight into the parameter’s optimization of the oilstone manufacturing process by achieving a better control on the honed surface texture of the cylinder bore.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3