Affiliation:
1. John and Willie Leone Family
Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802
Abstract
Modern natural gas reservoir decline performance analysis has traditionally relied on the use of oil type curves along with the concepts of pseudopressure and pseudotime. Alternatively, it also employs empirical curve fitting of rate-time production data for reserve and future performance analysis. In this work we show that the use of a density approach leads to the formulation of a new-generation type curve applicable to the analysis of unsteady state of natural gas wells under boundary dominated flow (BDF). The resulting gas reservoir decline equation applies to any gas well producing at constant bottomhole pressure under BDF. On the basis of this decline model, a single-line, universal type curve is derived for any gas fluid and reservoir properties producing under a constant drawdown condition. New-generation analytical procedures for gas well performance analysis are presented, which does not necessitate the calculation of pseudopressure or pseudotime. Explicit OGIP predictions are thus enabled from the proposed universal type curve matching. The proposed single-line type curve is demonstrated to successfully match rate-time production BDF data and reliably estimate fluids in place for a number of numerical simulations and field cases. It is also demonstrated that the proposed formulation can be alternatively implemented in terms of straight-line analysis of 1/qgscb versus time data plots.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献