Basin Analog Investigations Answer Characterization Challenges of Unconventional Gas Potential in Frontier Basins

Author:

Singh Kalwant1,Holditch Stephen A.1,Ayers Walter B.1

Affiliation:

1. Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843

Abstract

To meet future global oil and gas demands, the energy industry will need creative thinking that leads to the discovery and development of new fields. Unconventional gas resources, especially those in frontier (exploratory) basins, will play an important role in fulfilling future energy needs. To develop unconventional gas resources, we must first identify their occurrences and quantify their potential. Basin analog systems investigation (BASIN) is a computer software that can rapidly and inexpensively evaluate the unconventional gas resource potential of frontier basins. BASIN is linked to a database that includes petroleum systems and reservoir properties data from 25 intensely studied North American “reference” basins that have both conventional and unconventional oil and gas resources. To use BASIN, limited data from a frontier or “target” basin are used to query the database of North American reference basins and rank these reference basins as potential analogs to the frontier basin. Based on analog comparisons, we can predict unconventional gas resources and make preliminary engineering decisions concerning resource development and the best drilling, completion, stimulation, and production practices to use in the frontier basin. Initial software validation shows consistent results. If a basin is selected as the target basin while the same basin is also in the reference basin list, the results show that the basin is a 100% analog to itself. Other basins in the reference basin list are less than 100% analogs. Also, BASIN performed favorably when it was tested against analog basin decisions made by of a team of industry experts. BASIN rapidly and inexpensively identifies and ranks reference basins as analogs to a frontier basin, providing insights to potential gas resources and indicating the preliminary best engineering practice for resource development. It is an effective tool that provides guidance to inexperienced professionals and new perceptions for seasoned experts.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. The Effect of Globalization Upon Petroleum Engineering Education;Holditch

2. The Unconventional Option;Holditch

3. Unconventional Resources;Williams;Oil Gas Investor

4. Evaluation of Unconventional Resource Plays;Haskett

5. The Role of Unconventional Natural Gases in the Next 30 Years in Asia;Terasaki

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3