A simple approach to dynamic material balance for a dry-gas reservoir

Author:

Jongkittinarukorn KittiphongORCID,Last Nick,Jokhio Sarfaraz Ahmed,Escobar Freddy Humberto,Chewaroungroaj Jirawat

Abstract

AbstractThe dynamic material balance methodology can be used to estimate gas initially-in-place using only production and PVT data. With this methodology, reservoir pressure is obtained without requiring the well to be shut in; it is therefore superior to the static material balance method since there is no loss of production. However, the technique requires iterative calculations and numerical integration of gas pseudotime and is quite complex to implement in practice. A simpler and equally accurate methodology is proposed in this study. It requires only production and PVT data and also does not rely on a shut-in pressure survey. In addition, it requires neither iterative calculations nor numerical integration of gas pseudotime. The results of the analysis include gas initially-in-place and gas productivity index, and can easily be extended to production forecasting. Gas initially-in-place is evaluated with a high degree of reliability. The methodology is successfully tested with two simulated cases and one field case, giving high-accuracy results.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3