Productivity-Index Behavior for Hydraulically Fractured Reservoirs Depleted by Constant Production Rate Considering Transient-State and Semisteady-State Conditions

Author:

Al-Rbeawi Salam1

Affiliation:

1. METU–Northern Cyprus Campus, Turkey

Abstract

Summary This paper introduces a new approach for studying productivity-index (PI) behavior of fractured oil and gas reservoirs during transient-and pseudosteady-state conditions. This approach focuses on the fact that PI derivative could vanish at a certain production time, indicating the beginning of pseudosteady state, wherein the PI demonstrates constant value. The reservoirs in this study are considered depleted by horizontal wells intersecting multiple hydraulic fractures where Darcy flow and non-Darcy flow may control flow patterns in the porous media. The PI is calculated assuming constant production rate and considering pressure profile for early- and intermediate-production time when transient condition dominates fluid flow and late-production time when pseudosteady state is reached. The outcomes of this study can be summarized as understanding PI behavior at early- and intermediate-production time when transient flow is dominant in the porous media and late-production time when pseudosteady-state condition is reached; indicating the effect of reservoir configuration on PI and the time when this index approaches constant value; and introducing a study for the influence of non-Darcy flow in the PI. The most-interesting points in this study are the following. First, that PI reaches constant value when the rates of change with time for the two pressure drops—transient and pseudosteady state—are equal. Second, the time for approaching constant PI in a small drainage area is faster than for a large area. Third, that PI is affected by non-Darcy flow at early- and intermediate-production time; however, the effect is not seen at late-production time. Last, that PI could exhibit constant behavior for severe non-Darcy flow at early- and intermediate-production times even though transient-state condition dominates fluid flow in the porous media.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3