Influence of Rectangular Ribs on Exergetic Performance in a Triangular Duct Solar Air Heater

Author:

Nidhul Kottayat1,Kumar Sachin1,Yadav Ajay Kumar1,Anish S.1

Affiliation:

1. Advanced Heat Transfer Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India

Abstract

Abstract Several artificial roughness (ribs) configurations have been used in flat plate solar air heaters (SAH) in recent years to improve their overall performance. In the present work, energy and exergy analyses of rectangular ribs in a triangular duct SAH for varying relative rib heights (e/D = 0.02–0.04), relative rib pitches (P/e = 5–15), and rib aspect ratios (e/w = 0.5–4) are evaluated and compared with smooth SAH. The analysis reveals that the entropy generated due to heat transfer is lower for the ribbed triangular duct compared to the smooth duct. It is also observed that the width of the rib plays a crucial role in minimizing heat losses to the environment. A maximum reduction of 43% and 62% in exergy losses to the environment and exergy losses due to heat transfer to the fluid is achieved, respectively, with a rib aspect ratio (e/w) of 4 compared to the smooth plate. It is found that in contrast to the smooth plate, ribs beneath the absorber plate effectively improves thermal and exergetic efficiency. Maximum enhancement of 36% and 17% is obtained in exergetic efficiency (ηex) and thermal efficiency (ηth), respectively, for e/w = 4, P/e = 10 and e/D = 0.04. Results also show the superiority of the ribbed triangular duct over the ribbed rectangular duct for an application requiring compact SAH with a higher flowrate.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3