Numerical analysis on heat transfer, flow structure and exergy loss of combined truncated and circular ribs in a square duct

Author:

ILLYAS S. Mohamed1ORCID,VELLAISAMY Kumaresan2ORCID,MUTHUMANOKAR A.1ORCID

Affiliation:

1. Department of Mechanical Engineering, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India

2. Department of Mechanical Engineering, Anna University, Chennai, 600025, India

Abstract

The heat transfer, friction and exergy loss of a square duct with combined circular and trun-cated rectangular ribs are analyzed using computational fluid dynamics. The study is focused on the effect of rib arrangements on the flow and heat transfer performance. The analysis is carried out with six truncated rib angles varying between 15° and 90° and Re range of 12000 – 43000. The heat transfer is maximum in the middle part of the duct for 30° and 45° rib angles along span wise direction. The position of wake region is highly dependent on separation point over the circular rib as wake moves away radially from the axis of the duct for rib angles of 60°, 75° and 90°. The turbulent flow structures in large scale originates from side wall have marked effect on the heat transfer for the rib angles of 60°, 75° and 90° and with nearly with equal intensity for 15°, 30° and 45° rib angles. The exergy loss associated with friction is higher for 60° rib angle. While the normalized friction factor obtained with Fanning’s equation varied between 1.8 and 4.2 and thermal hydraulic performance varied between 0.2 and 1.3 for the range of reexamined.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3