From Scan Strategy to Melt Pool Prediction: A Neighboring-Effect Modeling Method

Author:

Yang Zhuo1,Lu Yan2,Yeung Ho2,Krishnamurty Sundar1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003

2. System Integration Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

Abstract The quality of additive manufacturing (AM) built parts is highly correlated to the melt pool characteristics. Hence, melt pool monitoring and control can potentially improve the AM part quality. This paper presents a neighboring-effect modeling method (NBEM) that uses a scan strategy to predict melt pool size. The prediction model can further assist in scan strategy optimization and real-time process control. The structure of the proposed model is formulated based on the physical principles of melt pool formation, while experimental data are used to identify the optimal coefficients. Compared to the traditional power-velocity prediction models, the NBEM model introduces the cumulative neighboring-effect factors as additional input variables. These factors represent the neighborhood impact of scan path on the focal point melt pool formation from time and distance perspective. Two experiments use different scan strategies to collect in situ measurements of the melt pool size for model construction and validation. By introducing the neighboring-effect factors, the global normalized root-mean-square Error (NRMSE) is improved from around 0.10 to 0.08. More importantly, the local NRMSE of irregular melt pool area prediction is improved to around 0.15 for more than 50% improvement. The case studies verify that the proposed method can predict the melt pool variations by seamlessly integrating scan strategy considerations.

Funder

National Institute of Standards and Technology

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3