Funder
DEVCOM Army Research Laboratory
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Akbari, P., Ogoke, F., Kao, N. Y., Meidani, K., Yeh, C. Y., Lee, W., & Farimani, A. B. (2022). Meltpoolnet: Melt pool characteristic prediction in metal additive manufacturing using machine learning. Additive Manufacturing, 55, 102817.
2. Carslaw, H. S. (1906). Introduction to the mathematical theory of the conduction of heat in solids. Macmillan and Company.
3. Crammer, K., & Mansour, Y. (2012). Learning multiple tasks using shared hypotheses. Advances in Neural Information Processing Systems, 25, 1.
4. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53–65.
5. Dilip, J. J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., & Stucker, B. (2017). Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti–6Al–4V alloy parts fabricated by selective laser melting. Progress in Additive Manufacturing, 2, 157–167.