Stochastic Defect Localization for Cooperative Additive Manufacturing Using Gaussian Mixture Maps

Author:

Rescsanski Sean11,Shah Vihaan22,Tang Jiong1,Imani Farhad1

Affiliation:

1. University of Connecticut School of Mechanical, Aerospace, and Manufacturing Engineering, , Storrs, CT 06269

2. University of Connecticut School of Computing, , Storrs, CT 06269

Abstract

Abstract Robotic additive manufacturing (RAM) offers significant improvements in maximum build volume compared to conventional bounded designs (e.g., gantry) by leveraging high degrees-of-freedom machines and multi-robot cooperation. However, cooperative RAM suffers from the same defect generation challenges as conventional systems, necessitating improvements in the detection and prevention of flaws within fabricated components. Quality assurance can be further bolstered through the integration of AM models, which utilize sensor feedback to localize defects, vastly reducing false positives. This research explores defect localization through a novel dynamic defect model created from simulated sensing data. In particular, two cooperative robots are simulated to estimate defect parameters, while observing the workspace and accurately classifying different regions of the part, generating a Gaussian mixture map that identifies and assigns appropriate actions based on defect types and characteristics. The experimental result shows that the implementation of the dynamic defect model and selective reevaluation achieved an effective defect detection accuracy of 99.9%, an improvement of 9.9% without localization. The proposed framework holds potential for application in domains that utilize high degrees-of-freedom machines and collaborative agents, offering scalability, improved fabrication speeds, and enhanced mechanical properties.

Funder

U.S. Department of Education

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3