Affiliation:
1. Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
Abstract
Stress-modulated growth in the aorta is studied using a theoretical model. The model is a thick-walled tube composed of two pseudoelastic, orthotropic layers representing the intima/media and the adventitia. Both layers are assumed to follow a growth law in which the time rates of change of the growth stretch ratios depend linearly on the local smooth muscle fiber stress and on the shear stress due to blood flow on the endothelium. Using finite elasticity theory modified to include volumetric growth, we computed temporal changes in stress, geometry, and opening angle (residual strain) during development and following the onset of sudden hypertension. For appropriate values of the coefficients in the growth law, the model yields results in reasonable agreement with published data for global and local growth of the rat aorta.
Subject
Physiology (medical),Biomedical Engineering
Cited by
192 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献