A mixed trigger volumetric growth law for cylindrical deformation in stressed configurations

Author:

Zhuan Xin1,Guan Debao2,Gao Hao1,Theobald Peter3,Luo Xiaoyu1ORCID

Affiliation:

1. School of Mathematics & Statistics, University of Glasgow, Glasgow, UK

2. School of Control Science and Engineering, Shandong University, Jinan, China

3. School of Engineering, Cardiff University, Cardiff, UK

Abstract

Soft tissue growth is crucial across various physiological applications, with mathematical modelling playing a pivotal role in understanding the underlying processes. The volumetric growth theory serves as a commonly used mathematical framework in this context. Our previous research on volumetric growth theory primarily concentrated on defining the incremental growth tensor in loaded and stressed configurations, revealing that this approach closely aligns with experimental observations of residual hoop stress distribution. However, given the assumptions employed, the approach has limitations in accurately predicting the growth timeline. In this work, we address these issues by incorporating the effect of initial residual strain and introducing a new mixed trigger growth evolution law. In this growth law, we do not use growth saturation as an upper limit, as this assumption cannot represent many physiological conditions. Instead, we propose that growth in soft tissues leads to a new equilibrium state. To illustrate this idea, we introduce a growth incompatibility function, denoted as [Formula: see text]. We establish the analytical relationship between [Formula: see text] and the opening angle in a simplified cylindrical geometry resembling the structure of the heart or arteries. We put forth a revised growth law that is both stress and incompatibility driven/Our results show that by using this mixed trigger growth law, tissues will not grow indefinitely. Instead, a stress-driven homeostasis incompatibility state will be reached. In addition, by accounting for the initial opening angle in the model, we can accurately trace the growth history of the heart, aligning with experimental data obtained from measuring the opening angle in young pigs from birth to maturity.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3