Affiliation:
1. REDS Lab, Dyson School of Design Engineering, Imperial College London, London SW7 2DB, UK
Abstract
Abstract
While the modeling analysis of the kinetostatic behavior of underactuated tendon-driven robotic fingers has been largely addressed in the literature, tendon routing is often not considered by these theoretical models. The tendon routing path plays a fundamental role in defining joint torques, and subsequently, the force vectors produced by the phalanges. However, dynamic tendon behavior is difficult to predict and is influenced by many external factors including tendon friction, the shape of the grasped object, the initial pose of the fingers, and finger contact points. In this paper, we present an experimental comparison of the force performance of nine fingers, with different tendon routing configurations. We use the concept of force-isotropy, in which forces are equal and distributed on each phalanx as the optimum condition for an adaptive grasp. Our results show only some of the finger designs surveyed exhibited a partial adaptive behavior, showing distributed force for the proximal and distal phalanxes throughout grasping cycles, while other routings resulted in only a single phalanx remaining in contact with the object.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献