Affiliation:
1. Aerospace and Mechanical Engineering, Boston University, Boston, MA 02215
Abstract
It is a well-known empirical result that stick-slip can often be eliminated from a system by stiffening it. More recently, it has been shown that for a negatively-sloped friction-velocity curve, a frictional lag must be present for machine/controller stiffness to produce this stabilizing effect. In this paper, experiments involving dry and lubricated line contacts of hardened tool steel are described which demonstrate the existence of frictional lag in boundary lubrication. It is also shown that a single-state-variable friction model provides a good representation of the actual friction dynamics. The model and associated parameter values provide a means for computing lower bounds on the machine stiffness and PD gains necessary for steady motion at velocities on the order of microns per second.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献