Reconstructing Compressor Non-Uniform Circumferential Flow Field From Spatially Undersampled Data—Part 1: Methodology and Sensitivity Analysis

Author:

Lou Fangyuan1,Key Nicole L.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Abstract The flow field in a compressor is circumferentially non-uniform due to the wakes from upstream stators, the potential field from both upstream and downstream stators, and blade row interactions. This non-uniform flow impacts stage performance as well as blade forced vibrations. Historically, experimental characterization of the circumferential flow variation is achieved by circumferentially traversing either a probe or the stator rows. This involves the design of complex traverse mechanisms and can be costly. To address this challenge, a novel method is proposed to reconstruct compressor non-uniform circumferential flow field using spatially under-sampled data points from a few probes at fixed circumferential locations. The paper is organized into two parts. In the present part of the paper, details of the multi-wavelet approximation for the reconstruction of circumferential flow and use of the particle swarm optimization algorithm for selection of probe positions are presented. Validation of the method is performed using the total pressure field in a multi-stage compressor representative of small core compressors in aero engines. The circumferential total pressure field is reconstructed from eight spatially distributed data points using a triple-wavelet approximation method. Results show good agreement between the reconstructed and the true total pressure fields. Also, a sensitivity analysis of the method is conducted to investigate the influence of probe spacing on the errors in the reconstructed signal.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3