Experimental Investigation on the Effects of Swirlers Configurations and Air Inlet Partitioning in a Partially Premixed Double High Swirl Gas Turbine Model Combustor

Author:

Mardani Amir1,Asadi Rekabdarkolaei Benyamin1,Rezapour Rastaaghi Hamed1

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, Azadi Street, Tehran 1458889694, Iran

Abstract

Abstract In this work, a double-high swirl gas turbine model combustor (GTMC) has been experimentally investigated to identify the effects of air partitioning and swirlers geometry on combustion characteristics in terms of flame stability, exhaust gas temperature, NOx generation, and combustion efficiency. This high swirl model combustor is originally developed in the German Aerospace Center (DLR) and known as GTMC and recently reconstructed at Sharif University's Combustion Laboratory (named as SGTMC). Here, SGTMC run for liquefied petroleum gas (LPG) fuel and air oxidizer at room temperature and atmospheric pressure. Eleven different burner geometries, M1–M11, are considered for the aims of this work. Furthermore, the effects of burner confinement are also investigated. The results show that under the confined state, the flame has a lower width and height than the unconfined one. Exchanging the swirlers of annular and central air inlets shows a more stable and lifted V type flame with almost zero levels of CO and CH4. In addition, measurement showed that the annular swirler removing leads to incomplete combustion. Moreover, an increment in discharged air velocity leads to more completed combustion and less pollutant exhaust gas but the attachment of flame to the burner hub. Strengthening the flow channeling is not reasonable in terms of emission aspects. Moreover, burner configuring to counterrotating swirlers leads to a more stable flame but with lower combustion efficiency. Among 11 test cases, the original configuration and the case of exchanging the swirlers of annular and central air inlets are the best choices in terms of combustion efficiency and stability. Measurements show the improvement of burner stability, 2–10%, due to inlet air preheating.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3