Investigation of flame structure and precessing vortex core instability of a gas turbine model combustor with different swirler configurations

Author:

Mardani Amir1ORCID,Asadi Benyamin1,Beige Amir A.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Numerical simulation of a dual-swirl gas turbine model combustor is performed under cold and reacting flow conditions using a three-dimensional unsteady Reynolds-averaged Navier–Stokes approach. A multi-species chemical mechanism is used in this study for the analysis of the numerous radicals participating in the ignition process and the flame structure. The other objective of this study is to investigate the flow field under different injector configurations, including both co-rotating and counter-rotating swirler arrangements, different swirl intensities, and vane areas. A comparison of the results with experimental data shows that the predicted velocity and temperature profiles follow the experimental data reasonably. In these studies, a precessing vortex core is found in the shear layer of the inner recirculation zone for all injector arrangements considered, and a co-rotating vortex exists in the outer shear layer for some of these arrangements. OH mass fraction field shows that the reactions take place mostly near the vortex core. Furthermore, it is shown that the build-up process of H2O2 and CH2O inside the cold jet has an important effect on combustion initiation. In addition, the formation and consumption of the H atoms in the recirculation zones and the balance between OH and H2O2 are shown to have important roles in the flame formation process. Finally, the precession frequency of the PVC is found to scale almost linearly with the spatial gradient of swirl velocity in the inner swirler and almost independent from the inclusion of the combustion reactions.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3