Combustion dynamics analysis of a pressurized airblast swirl burner using proper orthogonal decomposition

Author:

Ghasemi Alireza1ORCID,Christou Thomas2ORCID,Kok Jim B.W.1,Stelzner Björn2,Zarzalis Nikolaos2

Affiliation:

1. Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede, NB, The Netherlands

2. Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany

Abstract

Jet fuel-fired combustors in aero gas turbine engines have switched to lean burn to decrease nitric oxide emissions in recent years as a result of strict emission regulations. Lean operating conditions, however, exhibit a heightened sensitivity to thermoacoustic instabilities and such burners require careful consideration in design and operation. Similar to natural gas-fired combustors, they exhibit thermoacoustic instabilities, but the characteristics are more complex and less well-studied. This paper presents a numerical investigation of an airblast jet fuel swirl burner operating with preheated air at lean pressurized conditions. In order to understand the acoustic characteristics of the in-house designed burner (Magister UT burner), detached eddy simulations are performed at relevant aero engine conditions. Simulation results are then analyzed by means of our internally developed parallel modal analysis package, PARAMOUNT, to perform proper orthogonal decomposition (POD) on large datasets. The resulting modes are inspected to highlight flow features of interest and their associated acoustic frequencies at unforced conditions. Single frequency acoustic forcing is employed to study the acoustic response of the burner to perturbations at similar frequencies to its precessing vortex core. We show that parallel computation of POD modes is a viable tool to investigate the main flow features of swirl burners and is suitable for highlighting the important acoustic frequencies without the need to employ fully compressible computational fluid dynamics solvers. Additionally, the analysis method reveals the ways in which various flow structures correlate with each other and how external perturbations modify them.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3