Evaluation of a Low Emission Gas Turbine Operated on Hydrogen

Author:

Therkelsen Peter1,Mauzey Josh1,McDonell Vince1,Samuelsen Scott1

Affiliation:

1. University of California at Irvine, Irvine, CA

Abstract

The ever increasing strain on traditional centralized power generation and distribution systems has led to an increase in the use of distributed generation (DG) technologies. DG technologies are commonly found in urban areas that are sensitive to criteria pollutants, and as a result, they are subject to increasingly stringent emission regulations. Paralleling the growth of installed DG is the ever-increasing interest in hydrogen as an alternative fuel to natural gas. As a hydrogen infrastructure is developed, a desire to use this new fuel for DG applications will evolve. Microturbine generators (MTGs) are one example of DG technology that has emerged in this paradigm and are the technology of interest in the present work. To evaluate the potential role for hydrogen fired MTGs in this paradigm, understanding of what emission levels can be expected from such a system is needed The current study retrofits a natural gas fired MTG for operation on hydrogen and characterizes the resulting operability and emissions performance. The results of implementing design changes to improve emissions performance while maintaining stability and safety of the MTG when operating on hydrogen fuel are presented. The results also show improved stability limits which are utilized to help attain lower emissions of NOx. Further optimization is needed to achieve the NOx levels necessary to meet current regulations.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3