Emission Characteristics of a Premixed Cyclic-Periodical-Mixing Combustor Operated With Hydrogen-Natural Gas Fuel Mixtures

Author:

Brückner-Kalb Jochen R.1,Krösser Michael1,Hirsch Christoph1,Sattelmayer Thomas1

Affiliation:

1. Lehrstuhl für Thermodynamik, Technische Unversität München, Garching D-85748, Germany

Abstract

The concept of the cyclic periodical mixing combustion process (Kalb, and Sattelmayer, 2004, “Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner With Periodic Flue Gas Recirculation,” Proceedings of the ASME Turbo Expo 2004, Paper No. GT2004-53410; Kalb, and Sattelmayer, 2006, “Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner With Periodic Recirculation of Combustion Products,” ASME J. Eng. Gas Turbines Power, 128(2), pp. 247–254) for the extension of the lean blowout limit had been implemented in an atmospheric experimental combustor for testing with both external perfect (Brückner-Kalb, Hirsch, and Sattelmayer, 2006, “Operation Characteristics of a Premixed Sub-ppm NOx Burner With Periodical Recirculation of Combustion Products,” Proceedings of the ASME Turbo Expo 2006, Paper No. GT2006-90072) and technical (Brückner-Kalb, Napravnik, Hirsch, and Sattelmayer, 2007, “Development of a Fuel-Air Premixer for a Sub-ppm NOx Burner,” Proceedings of the ASME Turbo Expo 2007, Paper No. GT2007-27779) premixing of reactants. It had been tested with natural gas and has now been tested with a mixture of 70%vol of hydrogen and 30%vol of natural gas (98% CH4) as fuel. With natural gas the NOx emissions are unaffected by the limited technical premixing quality, as long as the air preheat is in the design range of the premixers (Brückner-Kalb, Napravnik, Hirsch, and Sattelmayer, 2007, “Development of a Fuel-Air Premixer for a Sub-ppm NOx Burner,” Proceedings of the ASME Turbo Expo 2007, Paper No. GT2007-27779). Then, for adiabatic flame temperatures of up to 1630 K NOx emissions are below 1 ppm(v) with CO emissions below 8 ppm(v) in the whole operation range of the test combustor (15% O2, dry). With the “70%volH2−30%volCH4” mixture the NOx emissions increase by nearly one order of magnitude. Then, NOx emissions below 7 ppm(v) (15% O2, dry) are achieved for adiabatic flame temperatures of up to 1600 K. They approach the 1 ppm(v) level only for flame temperatures below 1450 K. CO emissions are below 4 ppm(v). The reason for the increase in the NOx emissions is the higher reactivity of the mixture, which leads to earlier ignition in zones of still elevated unmixedness of reactants near the premixer-injector exits. This effect was investigated by chemical reactor network simulations analyzing a pressure effect and an additional chemical effect of hydrogen combustion on NOx formation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference34 articles.

1. Milani, A., and Saponaro, A., 2001, “Diluted Combustion Technologies,” The IFRF Electronic Combustion Journal, February, p. 200101.

2. Mild Combustion;Cavaliere;Prog. Energy Combust. Sci.

3. Mild Combustion in Homogeneous Charge Diffusion Ignition (HCDI) Regime;de Joannon

4. Milani, A., and Wünning, J., 2002, “What is Flameless Combustion?,” IFRF Online Combustion Handbook, Combustion File No. 171.

5. Flameless Oxidation to Reduce Thermal NO-Formation;Wünning;Prog. Energy Combust. Sci.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3