Statistical Quantification of Knock With Spark Ignition and Pre-Chamber Jet Ignition in a Light Duty Gasoline Engine

Author:

Yu Xin1,Zhang Anqi1,Baur Andrew1,Voice Alexander1,Engineer Nayan1

Affiliation:

1. Aramco Services Company

Abstract

Abstract Knock is a major challenge for high load operation of spark ignited gasoline engines with higher compression ratios, since the end-gas undergoes higher temperature and pressure trajectories during combustion. Pre-chamber combustion creates long-reach ignition jets that have the potential to mitigate knock due to their rapid consumption of end-gas. However, conventional pressure oscillation-based knock metrics may not accurately capture the end-gas autoignition severity in pre-chamber systems due to differences in ignition and combustion behavior. This work investigates the knock behavior of both traditional spark ignition and pre-chamber combustion (including different nozzle designs) in a high compression ratio engine fueled with regular octane certification gasoline. The data was analyzed using statistical methods to show the random nature of knock events. Detailed analysis was used to explain the pressure oscillations of both knocking and non-knocking cycles of pre-chamber jet combustion and show that conventional pressure oscillation-based knock metrics may not adequately quantify end-gas autoignition severity. A novel knock metric is introduced to avoid consideration of the non-knock related pressure oscillation and better quantify the end-gas autoignition severity. The new metric was used to explain the knock mitigation mechanism for pre-chamber jet combustion and demonstrate an additional pre-chamber jet ignition benefit of reduced combustion variability during engine operation with cooled exhaust gas circulation within its dilution limit.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3