Influence of Passive Pre-Chamber Nozzle Diameter on Jet Ignition in a Constant-Volume Optical Engine under Varying Load and Dilution Conditions

Author:

Lee Dong Eun1,Yu Tianxiao2,Alam Afaque1,Iyer Claudia3,Wooldridge Steven1,Qiao Li1,Yi Jianwen J.3

Affiliation:

1. Purdue University, School of Aeronautics and Astronautics, USA

2. Purdue University, School of Mechanical Engineering, USA

3. Ford Motor Company, USA

Abstract

<div>Despite the growing prominence of electrified vehicles, internal combustion engines remain essential in future transportation. This study delves into passive pre-chamber jet ignition, a leading-edge combustion technology, offering a comprehensive visualization of its operation under varying load and dilution conditions in light-duty GDI engines. Our primary objectives are to gain fundamental insights into passive pre-chamber jet ignition and subsequent main combustion processes and evaluate their response to different load and dilution conditions. We conducted experimental investigations using a light-duty, optical, single-cylinder engine equipped with three passive pre-chamber designs featuring varying nozzle diameters. Optical diagnostic imaging and heat release analysis provided critical insights. Findings reveal that as load decreases, fuel availability and flow conditions deteriorate, leading to delayed and suboptimal jet characteristics impacting main chamber ignition and combustion. Notably, at high and medium loads without dilution, the 1.2 mm-PC (smallest nozzle diameter) excels, exhibiting superior jet ignition and main combustion. This is attributed to earlier jet ejection, improved penetration, and intensified jets, all enabled by the smaller nozzle diameter. Conversely, under low load conditions, the 1.6 mm-PC (largest nozzle diameter) performs better due to enhanced scavenging and reduced pre-chamber residuals, resulting in more balanced pre-chamber combustion and jet characteristics. Furthermore, nozzle diameter significantly influences cycle-to-cycle variations, with smaller diameters enhancing jet ignition but intensifying variability. The impact of external residuals (dilution) on jet ignition performance varies with nozzle diameter, with the 1.6 mm-PC displaying less degradation and demonstrating earlier jet ejection and CA50 timing under higher dilution conditions. In summary, this research underscores the importance of scavenging and residual levels in pre-chamber design, influencing dilution tolerance, and extending possibilities for high-efficiency engines. It contributes essential insights into the behavior of passive pre-chamber jet ignition systems, facilitating their optimization for future internal combustion engines.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3