Gas-Dynamic Interactions between Pre-Chamber and Main Chamber in Passive Pre-Chamber Ignition Gasoline Engines

Author:

Yu Tianxiao1,Lee Dong Eun2,Gore Jay P.3,Qiao Li3

Affiliation:

1. Purdue University, School of Mechanical Engineering, USA

2. Purdue University, School of Aeronautics and Astronautics, USA

3. Purdue University, School of Mechanical Engineering, USA Purdue University, School of Aeronautics and Astronautics, USA

Abstract

<div>Pre-chamber turbulent jet ignition (TJI) is a method of generating distributed ignition sites through multiple high-speed turbulent jets in order to achieve an enhanced burn rate in the engine cylinder when compared to conventional spark plug ignition. To study the gas-dynamic interactions between the two chambers in a gasoline engine, a three-dimensional numerical model was developed using the commercial CFD code CONVERGE. The geometry and parameters of the engine used were based on a modified turbocharged GM four-cylinder 2.0 L GDI gasoline engine. Pre-chambers with nozzle diameters of 0.75 mm and 1.5 mm were used to investigate the effect of pre-chamber geometry on pre-chamber charging, combustion, and jet formation. The local developments of gas temperature and velocity were captured by adaptive mesh refinement, while the turbulence was resolved with the k-epsilon model of the Reynolds averaged Navier–Stokes (RANS) equations. The combustion process was modeled with the extended coherent flamelet model (ECFM). Data from engine experiments were compared with the computed main chamber pressures and heat release rates, and the results show good consistency with the model calculations. The scavenging and air–fuel equivalence ratio (λ) distribution of the pre-chambers improved with the larger nozzle, while the smaller nozzle generated jets with higher velocity, greater turbulence kinetic energy, and longer penetration length. Moreover, after the primary jet formation, secondary pre-chamber charging, combustion, and secondary jet formation were observed.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3