Development of Scalable Silicon Heat Spreader for High Power Electronic Devices

Author:

Cai Qingjun1,Chen Bing-Chung1,Tsai Chailun1,Chen Chung-lung1

Affiliation:

1. Teledyne Scientific & Image Company, 1049 Camino Dos Rios, Thousand Oaks, CA 91360

Abstract

A silicon heat spreader, called hexcell, is presented to develop thin, strong, interconnected, and scalable heat transfer devices for high power electronics cooling. Several key technical aspects, reflected characteristics of fabrication, thermomechanical, hermetic sealing, and heat transfer on wick structures, have been performed to underlie the system integration. The hexcell prototypes are developed through microelectromechanical system photolithography and dry-etch processes, associated with eutectic bonding to form a sealed silicon chamber. Hexcells are structurally optimized to minimize the stress, expanding the maximum operating pressure and temperature ranges. As a result, the developed hexcells can survive 0.32 MPa pressure difference and are able to sustain an operating temperature over 135°C. Experimental results of both helium and vapor leakage tests indicate that eutectic bonding with limited bonding surface area may not provide hermetic sealing. Vacuum sealing is achieved by introducing epoxy to fill the leak pine-holes on the bonding interface. The developed hexcell wick exhibits good heat and mass transport performance, reaching a maximum 300 W/cm2 cooling capacity with 35°C superheat as demonstrated with a prototype of a 2×2 mm2 heating area.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3