Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control

Author:

Phoenix Austin A.1,Wilson Evan1

Affiliation:

1. U.S. Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 e-mail:

Abstract

The novel adaptive thermal metamaterial developed in this paper provides a unique thermal management capability that can address the needs of future spacecraft. While advances in metamaterials have provided the ability to generate materials with a broad range of material properties, relatively little advancement has been made in the development of adaptive metamaterials. This metamaterial concept enables the development of materials with a highly nonlinear thermal conductivity as a function of temperature. Through enabling active or passive control of the metamaterials bulk effective thermal conductivity, this metamaterial that can improve the spacecraft's thermal management systems performance. This variable thermal conductivity is achieved through induced contact that results in changes in the F path length and the conductive path area. The contact can be generated internally using thermal strain from shape memory alloys, bimetal springs, and mismatches in coefficient of thermal expansion (CTE) or it can be generated externally using applied mechanical loading. The metamaterial can actively control the temperature of an interface by dynamically changing the bulk thermal conductivity controlling the instantaneous heat flux through the metamaterial. The design of thermal stability regions (regions of constant thermal conductivity versus temperature) into the nonlinear thermal conductivity as a function of temperature can provide passive thermal control. While this concept can be used in a wide range of applications, this paper focuses on the development of a metamaterial that achieves highly nonlinear thermal conductivity as a function of temperature to enable passive thermal control of spacecraft systems on orbit.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3