Variable Thermal Conductance Metamaterials for Passive or Active Thermal Management

Author:

Phoenix Austin A.1,Wilson Evan1

Affiliation:

1. US Naval Research Laboratory, Washington, DC

Abstract

To continue to meet spacecraft systems ever increasing thermal management requirements, new control methods need to be developed. While advances in metamaterials have provided the ability to generate materials with a broad range of material properties, relatively little advancement has been made in the development of adaptive metamaterials. This paper is focused on the development of a thermal management metamaterial that enables the active and passive control of a metamaterial’s thermal conductance. This variable conductivity is achieved through the application of internally or externally applied loads that induce internal contact resulting in changes in the conductive path length and the effective conductive area. This capability enables active or passive control of a metamaterial’s effective thermal conduction through the application of mechanical and thermal strain. Passively applied thermal strains can be used to design a highly nonlinear material thermal conductivity as a function of temperature. Actively, this can be used to precisely control the temperature of an interface through dynamically changing the instantaneous heat flux through the metamaterial. This work expands on the field of thermal switches by enabling a non-binary configuration where the initial air gap is slowly closed as contact sequentially introduced into the metamaterial. As internally or externally developed loading is applied, contact is introduced with an increasing contact area until full contact is achieved. This intermediate step of partial contact enables unique design capabilities that enable highly nonlinear thermal conductivity as a function of temperature as well as stability regions that allow passive thermal control. An example metamaterial was developed and evaluated to quantify the potential of this concept. The specific metamaterial configuration assessed in this paper uses offset flat and curved copper plates that are connected at the edges of the plate using a low conductivity epoxy. To evaluate the metamaterial performance, the stiffness and thermal conductivity are calculated as a function of the resulting contact area and the required applied loading. This work is focused on determining the potential of this metamaterial concept by evaluating this initial concept confirmation to establish the magnitude of the thermal conductance change, and the design of the conductivity change a function of applied loading.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactive metamaterials;Interactions;2019-12-26

2. Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control;Journal of Thermal Science and Engineering Applications;2018-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3