Variable Thermal Conductivity Metamaterials Applied to Passive Thermal Control of Satellites

Author:

Phoenix Austin A.1

Affiliation:

1. Virginia Polytechnic Institute & State University National Security Institute, , 1311 Research Center Drive (MC 0713), Blacksburg, VA 24060

Abstract

Abstract Active materials like the proposed variable thermal conductivity metamaterial enable new thermal designs and low-cost, low-power, passive thermal control. Thermal control of satellites conventionally requires active thermal control systems that are expensive, large, inefficient, energy-intensive, and unavailable for CubeSats. The high-temperature operation case is the thermal system’s primary design consideration for CubeSats. The thermal path is designed to reject as much heat as possible to ensure the system does not overheat. In other cases, such as during a power anomaly, the oversized thermal path results in rapid cooling, culminating in mission failure due to thermal limits on the electronics or batteries. Improving the thermal control of CubeSats can enable new thermally challenging missions, increase satellite longevity, and increase mission success rate by controlling the dynamic thermal environment. The materials available for thermal management are inherently limited, but new engineered materials provide unique opportunities to change how satellites adapt to thermal loads. This paper investigates using an adaptive metamaterial designed to passively change its thermal conductivity as a function of temperature to meet the needs of the satellite. The thermal performance of a CubeSat is evaluated with a variable thermal conductivity metamaterial located in the critical thermal path from the satellite to the radiator. The system’s performance using two metamaterial configurations is compared to a baseline copper thermal path. Multiple satellite thermal operation cases are investigated to determine the operation ranges, and the metamaterial’s performance in various conditions is quantified.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference39 articles.

1. Variable Thermal Conductance Metamaterials for Passive or Active Thermal Management;Phoenix,2017

2. Adaptive Thermal Conductivity Metamaterials: Enabling Active and Passive Thermal Control;Phoenix;ASME J. Therm. Sci. Eng. Appl.,2018

3. Variable Conductivity Metamaterials and Thermal Control Systems Employing the Same;Phoenix,2020

4. High Precision Thermal Morphing of the Smart Anisogrid Structure for Space-Based Applications;Phoenix,2016

5. Thermal Morphing Anisogrid Smart Space Structures: Thermal Isolation Design and Linearity Evaluation;Phoenix,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3