Unburnt Carbon From Oxygen-Enriched Combustion of Low-Quality Fuels at Low Temperatures

Author:

Haykiri-Acma H.1,Yaman S.2

Affiliation:

1. Chemical Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey

2. Chemical Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey e-mail:

Abstract

This paper investigates the effectiveness of oxygen-enriched combustion process at low temperatures to avoid the unburnt carbon that remains in ash during conventional burning process. For this, thermal treatment of low-quality fuels such as olive pomace and Turkish lignite (Afsin-Elbistan) under oxygen-enriched conditions was tested in a tube furnace at temperatures between 400 and 700 °C under O2/N2 mixtures containing O2 ratios in the range of 25–50 vol %. The calorific value and the unburnt carbon content of the residues from these tests were used to investigate the combined effects of temperature and O2 concentration on unusable part of fuels. Thermal reactivity of untreated parent samples and the residues obtained from oxygen-enriched combustion was also compared based on differential thermal analysis (DTA) and derivative thermogravimetry (DTG) profiles. It was determined that oxygen-enriched conditions are able to remove the organic part of the fuels at low temperatures easily as O2 concentration increases and the oxygen-enriched conditions shifted complete burning temperature to lower values.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3