Synergistic Interactions During Cocombustion of Lignite, Biomass, and Their Chars

Author:

Caliskan Sarikaya A.1,Haykiri Acma H.1,Yaman S.1

Affiliation:

1. Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey e-mail:

Abstract

Woody biomasses such as ash tree (AT), hybrid poplar (HP), and rhododendron (RD) were subjected to torrefaction and carbonization at temperatures of 200 °C and 400 °C. Likewise, several lignite samples were carbonized at 750 °C. Various binary fuel blends such as raw lignite/raw biomass, raw lignite/biochar, lignitic char/raw biomass, and lignitic char/biochar were prepared where the fraction of biomass or biochar was 10 wt% in the blends. The cocombustion characteristics of these blends were investigated through a thermal analysis method from the synergetic point of view considering the fuel properties and the combustion performance. Some parameters relevant to the combustion reactivity such as ignition point, maximum rate, peak temperature, and burnout temperature were commented to figure out whether synergistic interaction or additive behavior governs the combustion characteristics of the blends. Also, the combustion performance indices such as ignition index (Ci), burnout index (Cb), comprehensive combustibility index (S), and the burning stability index (DW) were estimated. It was concluded that the combinations of the additive behavior and the synergistic interactions governs the cocombustion process, and the kind of the fuels and their thermal history determine the reactivity and the interactions during cocombustion.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3