Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace

Author:

Wladyslaw Mitianiec1

Affiliation:

1. Mechanical Faculty, Cracow University of Technology, Al. Jana Pawla II 37, Krakow 31-864, Poland e-mail:

Abstract

Combustion processes of two fuels, pulverized coal and biomass, in furnaces take place at steady state. Combustion of condensed fuels involves one-way interfacial flux due to phenomena in the condensed phase (evaporation or pyrolysis) and reciprocal ones (heterogeneous combustion and gasification). Many of the species injected in the gas phase are later involved in gas phase combustion. This paper presents results of combustion process of two-phase charge contained coal and wetted biomass, where the carrier was the air with given flow rate. The furnace has three inlets with assumed inlet flow rate of coal, biomass, and air, and combustion process takes place in the furnace fluidized space. The simulation of such combustion process was carried out by numerical code of open source computational fluid dynamics (CFD) program code_saturne. For both fuels, the moist biomass with following mass contents: C = 53%, H = 5.8%, O = 37.62%, ash = 3.6, and mean diameter of molecules equal to 0.0008 m and pulverized coal with following mass contents: C = 76.65%, H = 5.16%, O = 9.9%, ash = 6.21%, and mean molecule diameter 0.000025 m were used. Devolatilization process with kinetic reactions was taken into account. Distribution of the main combustion product in furnace space is presented with disappearance of the molecules of fuels. This paper presents theoretical description of the two-phase charge, specification of the thermodynamic state of the charge in inlet boundaries and furnace space, and thermal parameters of solid fuel molecules obtained from the open source postprocessor paraview.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference30 articles.

1. Biomass Energy Lessons From Case Studies in Developing Countries;Energy Policy,1992

2. Controlling the Greenhouse Effect: The Role of Renewables;Energy Policy,1991

3. Combustion Characteristics of Different Biomass Fuels;Prog. Energy Combust. Sci.,2004

4. Combustion and Co-Combustion of Biomass: Guide (Spalanie i wspólspalanie biomasy: Poradnik),2010

5. Coal—Biomass Co-Combustion: An Overview;Renewable Sustainable Energy Rev.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3