Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition—Part I: Design and Optimization

Author:

Sonoda Toyotaka1,Yamaguchi Yoshihiro1,Arima Toshiyuki1,Olhofer Markus2,Sendhoff Bernhard2,Schreiber Heinz-Adolf3

Affiliation:

1. Honda R&D Co., Ltd., Wako Research Center, Saitama 351-0193, Japan

2. Honda Research Institute Europe GmbH, 63073 Offenbach, Germany

3. German Aerospace Center (DLR), Institute of Propulsion Technology, D-51170 Ko¨ln, Germany

Abstract

High performance compressor airfoils at a low Reynolds number condition at Re=1.3×105 have been developed using evolutionary algorithms in order to improve the performance of the outlet guide vane (OGV), used in a single low pressure turbine (LPT) of a small turbofan engine for business jet aircrafts. Two different numerical optimization methods, the evolution strategy (ES) and the multi-objective genetic algorithm (MOGA), were adopted for the design process to minimize the total pressure loss and the deviation angle at the design point at low Reynolds number condition. Especially, with respect to the MOGA, robustness against changes of the incidence angle is considered. The optimization process includes the representation of the blade geometry, the generation of a numerical grid and a blade-to-blade analysis using a quasi-three-dimensional Navier-Stokes solver with a k-ω turbulence model including a newly implemented transition model to evaluate the performance. Overall aerodynamic performance and boundary layer properties for the two optimized blades are discussed numerically. The superior performance of the two optimized airfoils is demonstrated by a comparison with conventional controlled diffusion airfoils (CDA). The advantage in performance has been confirmed by detailed experimental investigations, which are presented in Part II of this paper.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3