1999 Turbomachinery Committee Best Paper Award: Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines— Part I: Design and Optimization

Author:

Ko¨ller Ulf1,Mo¨nig Reinhard1,Ku¨sters Bernhard2,Schreiber Heinz-Adolf2

Affiliation:

1. Siemens AG, Power Generation (KWU) D-45466 Mu¨lheim a. d. Ruhr, Germany

2. German Aerospace Center, Institute of Propulsion Technology, D-51170 Ko¨ln, Germany

Abstract

A new family of subsonic compressor airfoils, which are characterized by low losses and wide operating ranges, has been designed for use in heavy-duty gas turbines. In particular the influence of the higher airfoil Reynolds numbers compared to aeroengine compressors and the impact of these differences on the location of transition are taken into account. The design process itself is carried out by the combination of a geometric code for the airfoil description, with a blade-to-blade solver and a numerical optimization algorithm. The optimization process includes the design-point losses for a specified Q3D flow problem and the off-design performance for the entire operating range. The family covers a wide range of inlet flow angle, Mach number, flow turning, blade thickness, solidity and AVDR in order to consider the entire range of flow conditions that occur in practical compressor design. The superior performance of the new airfoil family is demonstrated by a comparison with conventional controlled diffusion airfoils (CDA). The advantage in performance has been confirmed by detailed experimental investigations, which will be presented in Part II of the paper. This leads to the conclusion that CDA airfoils that have been primarily developed for aeroengine applications are not the optimum solution, if directly transferred to heavy-duty gas turbines. A significant improvement in compressor efficiency is possible, if the new profiles are used instead of conventional airfoils. [S0889-504X(00)02102-4]

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3