The Effect of Reynolds Number and Laminar Separation on Axial Cascade Performance

Author:

Roberts W. B.1

Affiliation:

1. Emergent Systems and Programs Dept. Marine Division, Westinghouse Electric Corp., Sunnyvale, Calif.

Abstract

Testing over a range of Reynolds numbers was done for three NACA 65 Profiles in cascade. The testing was carried out in the VKI C-1 Low Speed Cascade Wind Tunnel; blade chord Reynolds number was varied from 250,000 to 40,000. A semiempirical theory is developed which will predict the behavior of the shear layer across a laminar separation bubble. The method is proposed for two-dimensional incompressible flow and is applicable down to short bubble bursting. The method can be used to predict the length of the laminar bubble, the bursting Reynolds number, and the development of the shear layer through the separated region. As such it is a practical method for calculating the profile losses of axial compressor and turbine cascades in the presence of laminar separation bubbles. It can also be used to predict the abrupt leading edge stall associated with thin airfoil sections. The predictions made by the method are compared with the available experimental data. The agreement could be considered good. The method was also used to predict regions of laminar separation in converging flows through axial compressor cascades (exterior to the corner vortices) with good results. For Reynolds numbers below bursting the semiempirical theory no longer applies. For this situation the performance of an axial compressor cascade can be computed using an empirical correlation proposed by the author. Comparison of performance prediction with experiment shows satisfactory agreement. Finally, a tentative correlation, based on the NACA Diffusion Factor, is presented that allows a rapid estimation of the bursting Reynolds number of an axial compressor cascade.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3