Affiliation:
1. University of Florida Department of Mechanical and Aerospace Engineering, , 1064 Center Dr., Rm. 181, Gainesville, FL 32653
Abstract
AbstractA significant challenge in human–robot collaboration (HRC) is coordinating robot and human motions. Discoordination can lead to production delays and human discomfort. Prior works seek coordination by planning robot paths that consider humans or their anticipated occupancy as static obstacles, making them nearsighted and prone to entrapment by human motion. This work presents the spatio-temporal avoidance of predictions-prediction and planning framework (STAP-PPF) to improve robot–human coordination in HRC. STAP-PPF predicts multi-step human motion sequences based on the locations of objects the human manipulates. STAP-PPF then proactively determines time-optimal robot paths considering predicted human motion and robot speed restrictions anticipated according to the ISO15066 speed and separation monitoring (SSM) mode. When executing robot paths, STAP-PPF continuously updates human motion predictions. In real-time, STAP-PPF warps the robot’s path to account for continuously updated human motion predictions and updated SSM effects to mitigate delays and human discomfort. Results show the STAP-PPF generates robot trajectories of shorter duration. STAP-PPF robot trajectories also adapted better to real-time human motion deviation. STAP-PPF robot trajectories also maintain greater robot/human separation throughout tasks requiring close human–robot interaction. Tests with an assembly sequence demonstrate STAP-PPF’s ability to predict multi-step human tasks and plan robot motions for the sequence. STAP-PPF also most accurately estimates robot trajectory durations, within 30% of actual, which can be used to adapt the robot sequencing to minimize disruption.
Funder
National Science Foundation
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献