Prediction of Human Reaching Pose Sequences in Human–Robot Collaboration

Author:

Flowers Jared1,Wiens Gloria1

Affiliation:

1. University of Florida Department of Mechanical and Aerospace Engineering, , 1064 Center Dr., Rm. 181, Gainesville, FL 32653

Abstract

Abstract In human–robot collaboration, robots and humans must work together in shared, overlapping, workspaces to accomplish tasks. If human and robot motion can be coordinated, then collisions between robot and human can seamlessly be avoided without requiring either of them to stop work. A key part of this coordination is anticipating humans’ future motion so robot motion can be adapted proactively. In this work, a generative neural network predicts a multi-step sequence of human poses for tabletop reaching motions. The multi-step sequence is mapped to a time-series based on a human speed versus motion distance model. The input to the network is the human’s reaching target relative to current pelvis location combined with current human pose. A dataset was generated of human motions to reach various positions on or above the table in front of the human starting from a wide variety of initial human poses. After training the network, experiments showed that the predicted sequences generated by this method matched the actual recordings of human motion within an L2 joint error of 7.6 cm and L2 link roll–pitch–yaw error of 0.301 rad on average. This method predicts motion for an entire reach motion without suffering from the exponential propagation of prediction error that limits the horizon of prior works.

Funder

National Science Foundation

Publisher

ASME International

Reference24 articles.

1. Recurrent Neural Network for Motion Trajectory Prediction in Human-Robot Collaborative Assembly;Zhang;CIRP Ann. Manuf. Technol.,2020

2. Human Motion Prediction for Human–Robot Collaboration;Liu;ASME J. Manuf. Syst.,2017

3. Learning Interaction for Collaborative Tasks With Probabilistic Movement Primitives;Maeda,2014

4. Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks;Maeda;Auton. Rob.,2017

5. Human-Robot Collaborative Manipulation Planning Using Early Prediction of Human Motion;Mainprice,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3