Affiliation:
1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:
Abstract
The phosphor dip-transfer coating method is simple and flexible for transferring a pre-analyzed volume of phosphor gel, which can be beneficial to the high angular color uniformity (ACU) of white light-emitting diodes (LEDs). The crux of this method is the volume control of the phosphor gel; however, the critical factors which influence the volume control remain unrevealed. In this paper, we concentrate on investigating the transferred volume in terms of three parameters: withdrawal speed, post radius, and dipping depth. Numerical simulations were carried out utilizing the volume of fluid (VOF) model combined with the dynamic mesh model. The experiments were also conducted on an optical platform equipped with a high-speed camera. The simulation results coincide well with the experimental results, with the maximum relative difference within 15%. The results show that the transferred volume increases with the increasing withdrawal speed and remains stable when the speed is greater than 1 mm/s, and it shows a linear relationship with the cube of post radius. And the transferred volume will increase with the dipping depth. Based on the experimental and numerically work, it is concluded that the volume of the pre-analyzed phosphor gel can be precisely obtained.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献