Affiliation:
1. University Duisburg-Essen, Duisburg, Germany
Abstract
Intralogistics systems are a rapidly growing market. Today, high racks and automated storage retrieval machines are widely used to store and handle industrial goods. Conventional storage retrieval machines show a major drawback: While the containers or goods to be moved are often very lightweight, the storage retrieval machine itself may weight up to two tons which limits the energy efficiency and the motion capabilities. This limitation is a problem since the reduction of cycle times is crucial in logistics applications. Therefore, faster motions are desired. At the same time, a main focus in intralogistics development is on energy-saving solutions as part of the ongoing climate change debate. Together with the rising energy costs, this paves the way for radical new concepts which go beyond the lightweight construction of conventional storage retrieval machines. Recently, a huge research project started to realize an alternative approach for a storage retrieval machine system. This approach uses a parallel wire robot system to move the goods to be stored to the desired position. The system is extremely lightweight and therefore, fast motions are possible while the required energy is comparably low. Therefore, cycle times for the transport of the goods can be drastically reduced which is crucial in this application. The paper presented here describes both design concepts which were already presented, as well as optimized geometries which are superior in terms of workspace coverage and stiffness. First simulation results are shown and discussed with a focus on the potential of the system for precise loading and unloading of containers. Besides that, the overall mechatronic system design is introduced.
Publisher
American Society of Mechanical Engineers
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献