A Nonlinear Three-Dimensional Coupled Fluid-Sediment Interaction Model for Large Seabed Deformation

Author:

Nakamura Tomoaki1,Yim Solomon C.2

Affiliation:

1. Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

2. School of Civil and Construction Engineering, Oregon State University, 220 Owen Hall, Corvallis, OR 97331-3212

Abstract

A nonlinear three-dimensional two-way coupled fluid-sediment interaction model is developed in this study. The model is composed of a generalized Navier–Stokes solver (GNS) with a volume of fluid module for air-water interface tracking and a sediment transport module (STM) for fluid-sediment interface tracking. The GNS model is based on the finite difference method with a turbulent stress model of large-eddy simulation to compute incompressible viscous multiphase flows. The STM is used to compute nonlinear sediment bed profile change due to bed-load sediment transport. A two-way coupling scheme connecting GNS with STM is implemented at each time step to ensure the fluid-sediment interaction. For validation, the fluid-sediment interaction model is applied to predict cross-shore profile change of a sloping beach due to breaking solitary waves, and the resulting predictions are examined and compared with the measured data from a set of hydraulic tests. It is found that the fluid-sediment interaction model predicts reasonably well the sediment transport and the resulting beach profile change. The sensitivity of model parameters involving the sediment transport to the beach profile change is analyzed. Finally, the fluid-sediment interaction model is applied to predict local scour in front of a quay wall due to a jet flow to demonstrate its applicability to general three-dimensional problems.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3