A Three-Dimensional Coupled Fluid-Sediment Interaction Model With Bed-Load/Suspended-Load Transport for Scour Analysis Around a Fixed Structure

Author:

Nakamura Tomoaki1,Mizutani Norimi2,Yim Solomon C.31

Affiliation:

1. School of Civil and Construction Engineering, Oregon State University, 220 Owen Hall, Corvallis, OR 97331

2. Department of Civil Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

3. Fellow ASME

Abstract

The predictive capability of a three-dimensional (3D) numerical model for sediment transport and resulting scour around a structure is investigated in this study. Starting with the bed-load and suspended-load sediment transport (reference) model developed by Takahashi et al. (2000, “Modeling Sediment Transport Due to Tsunamis With Exchange Rate Between Bed Load Layer and Suspended Load Layer,” Proceedings of the 27th International Conference on Coastal Engineering, ASCE, Sydney, Australia, pp. 1508–1519), we first introduce an extension to incorporate Nielsen’s modified Shields parameter to account for the effects of infiltration/exfiltration flow velocity across the fluid-sand interface on the sediment transport (the modified Shields-parameter model). We then propose a new model to include the influence of the effective stress to account for the stress fluctuations inside the surface layer of the sand bed (the effective-stress model). The three analytical models are incorporated into a 3D numerical solver developed by Nakamura et al. (2008, “Tsunami Scour Around a Square Structure,” Coast. Eng. Japan, 50(2), pp. 209–246) to analyze the dynamics of fluid-sediment interaction and scour. Their solver is composed of two modules, namely, a finite-difference numerical wave tank and a finite-element coupled sand-skeleton pore-water module. The predictive capability of the three alternative coupled models is calibrated against hydraulic experiments on sediment transport and resulting scour around a fixed rigid structure due to the run-up of a single large wave in terms of the sediment transport process and the final scour profile after the wave run-up. It is found that, among the three models considered, the proposed effective-stress model most accurately predicts the scouring process around the seaward corner of the structure. The results also reveal that the deposition and erosion patterns predicted using the effective-stress model are in good agreement with measured results, while a scour hole at the seaward corner of the structure cannot be always predicted by the other two models.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference19 articles.

1. Kawamura, B., and Mogi, T., 1961, “On the Deformation of the Sea Bottom in Some Harbors in the Sanriku Coast Due to the Chile Tsunami,” Committee for Field Investigation of the Chilean Tsunami of 1960, ed., pp. 57–66.

2. Modeling Sediment Transport Due to Tsunamis With Exchange Rate Between Bed Load Layer and Suspended Load Layer;Takahashi

3. Tsunami Scour Around a Square Structure;Nakamura;Coast. Eng. Japan

4. The Influence of Swash Infiltration-Exfiltration on Beach Face Sediment Transport: Onshore or Offshore?;Butt;Coast. Eng. Japan

5. Coastal Bottom Boundary Layers and Sediment Transport

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3