Leakage and Dynamic Force Coefficients of a Pocket Damper Seal Operating Under a Wet Gas Condition: Tests Versus Predictions

Author:

Yang Jing1,San Andrés Luis2,Lu Xueliang1

Affiliation:

1. Turbomachinery Laboratory, J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

2. J. Mike Walker '66 Department of Mechanical Engineering, Turbomachinery Laboratory, Texas A&M University, College Station, TX 77843

Abstract

AbstractHigh-performance centrifugal compressors presently favor pocket damper seals (PDSs) as a choice of secondary flow control element offering a large effective damping coefficient to mitigate rotor subsynchronous whirl motions. Current and upcoming multiple-phase compression systems in subsea production facilities must demonstrate long-term operation and continuous availability, free of harmful rotor instabilities. Plain annular seals and labyrinth (LABY) seals are notoriously bad choices, whereas a PDS, by stopping the circulation of trapped liquid, operates stably. This paper presents experimental and computational fluid dynamics (CFD) results for the leakage and dynamic force coefficients obtained in a dedicated test facility hosting a fully partitioned PDS (FPPDS), four ribbed and with eight pockets per cavity. The test PDS, operating at a rotor speed 5250 rpm (surface speed 35 m/s) and under a supply pressure/discharge pressure ratio up to 3.2, is supplied with a mixture of air and ISO VG 10 oil whose maximum liquid volume fraction (LVF) is 2.2%, equivalent to a liquid mass fraction of 84%. When supplied with just air (dry condition), the measured leakage increases nonlinearly with supply pressure. Under a wet gas condition, the recorded mass flow increases on account of the large difference in density between the liquid and the gas. CFD-derived mass flow rates for both dry and wet gas conditions agree with the measured ones. The test dry gas PDS produces a direct dynamic stiffness (HR) increasing with frequency, whereas the direct damping (C) and cross-coupled dynamic stiffness (hR) coefficients remain relatively constant. The CFD-predicted damping agrees best with the test C albeit overpredicting HR at low excitation frequencies and hR at all frequencies (<175 Hz ∼ twice rotor speed). Under a wet gas condition with LVF  =  0.4%, the test force coefficients show great variability over the excitation frequency range; in particular, HR < 0, though growing with frequency due to the large liquid mass fraction. The CFD predictions, on the other hand, produce a dynamic direct stiffness HR > 0 for all frequencies. Both experimental hR and C for the wet gas PDS are larger than their counterparts for the dry gas seal. The CFD-predicted C and hR, wet versus dry, show a modest growth, yet remaining lower than the test data. The CFD-derived flow field for a wet gas condition shows that the seal radial partition walls (ridges) reduce the circumferential flow velocity and liquid accumulation within a pocket. Both the test data and the CFD prediction show that the magnitude of the flexibility function for the PDS test system reduces when the two-component mixture flows through the seal, hence revealing the additional effective damping, more pronounced for the test data rather than that from the predictions. Further work, experimental and CFD based, will continue to advance the technology of wet gas seals while bridging the gap between test data and computational physics model simulations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference33 articles.

1. Vance, J. M., and Shultz, R. R., 1993, “ A New Damper Seal for Turbomachinery,” 14th Vibration and Noise Conference, Sept. 19–22, Albuquerque, NM, pp. 139–148.

2. Benckert, H., and Wachter, J., 1980, “ Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics,” Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery, Texas A&M University, College Station, TX, May 12–14, pp. 189–212.

3. Test Results of a New Damper Seal for Vibration Reduction in Turbomachinery;ASME J. Eng. Gas Turbines Power,1996

4. Experimental Force Coefficients for a Two-Bladed Labyrinth Seal and a Four-Pocket Damper Seal;ASME J. Tribol.,1999

5. Rotordynamic Force Coefficients of Pocket Damper Seals;ASME J. Turbomach.,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3