Computational Fluid Dynamics Analysis and Experimental Results for the Dynamic Performance of Two Long Smooth Surface Annular Seals Operating With a Liquid in Air Mixture

Author:

Yang Jing1,Tran Dung L.2,San Andrés Luis3

Affiliation:

1. Mike Walker ’66 Department of Mechanical Engineering, Turbomachinery Laboratory , Texas A&M University, College Station, TX 77843

2. Sr. R&D Engineer, Energy Recovery Inc. , San Leandro, CA 94577

3. J. Mike Walker ’66 Department of Mechanical Engineering, Turbomachinery Laboratory , Texas A&M University, College Station, TX 77843

Abstract

Abstract Compressors in subsea oil and gas production must handle wet gases to reliably operate for extended periods of time. Annular clearance seals contribute to compressor performance and do affect system rotordynamic stability. Prior experimental work with two smooth surfaces, uniform clearance seals supplied with a light oil in air mixture and undergoing similar operating conditions produced direct stiffnesses (K) with distinct trends as the liquid content increased to 8% in volume. Both seals differ in length and diameter albeit having similar radial clearance. Other force coefficients for both seals, namely, cross-coupled stiffness (k) and direct damping (C) increase as the inlet liquid volume fraction (LVF) grows. Rationale for the peculiar differences in centering stiffness (K) is missing. Hence, a computational fluid dynamics (CFD) model and its predictions, the thrust of this paper, unveil flow field details (pressure, velocity fields, and liquid content evolution) for the oil in air mixture. Besides the CFD model, an enhanced bulk-flow model (BFM) also predicts the seals' leakage and dynamic force coefficients. Both models predict through flows agreeing well with the measured ones, the maximum difference is less than 16%. The BFM direct stiffness (K) does reproduce closely the experimental K whereas the direct damping coefficient (C) is up to ∼41% lower than the test result. The CFD model captures the variation trend of K versus inlet LVF for the first seal, albeit its magnitude is thrice the experimental stiffness. The CFD C agrees well with the test data for both seals, the largest difference is less than 10%. In spite of the complexity of the CFD model, significant differences with the experimental results persist, in particular for K. When considering the seal inlet corner as round, the CFD model produces a significant reduction in K to better approach the test result for a seal supplied with air. Attention to the seal geometry is paramount to produce accurate predictions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3