Test Results of a New Damper Seal for Vibration Reduction in Turbomachinery

Author:

Vance J. M.1,Li J.1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

A new type of labyrinth gas seal for damping vibration and whirl, called the TAMSEAL, has been evaluated in both nonrotating and rotating tests at Texas A&M University. Test results of the prototype, along with comparison tests of a conventional labyrinth seal, show up to 100 times more direct damping than the conventional bladed seal. The new design also has a feature that blocks swirl of the working fluid, which is known to be rotordynamically destabilizing in machines with conventional seals. Coastdown tests of the new seal were conducted at various pressures on a rotordynamic test apparatus with a critical speed at 4000 rpm and compared with identical testing of a conventional labyrinth seal. Rap tests of both seals were also conducted to measure the logarithmic decrement of free vibration, and the leakage of both seals was measured. Test results show large reductions in peak vibration at the critical speed in all cases, with the critical speed being completely eliminated by the TAMSEAL at some pressure drop conditions. The leakage rate of the tested TAMSEAL is higher than the conventional seal at the same clearance, but the large reductions in vibration and whirl amplitudes suggest that the TAMSEAL could be operated with smaller clearances than conventional labyrinth seals.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotordynamic characteristics of a novel labyrinth seal with partition walls and helical groove teeth;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-11-23

2. Rotordynamic characteristics prediction for scallop damper seals using computational fluid dynamics;CHINESE J AERONAUT;2022

3. Restoring the stability of the rotor system by adjusting the radial clearance of the bearing;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2022-05-30

4. Study on adaptive concentric performance of floating self-concentric seals;Journal of Mechanical Science and Technology;2022-04-29

5. Simulation of Leakage Characteristics of Combined Seal Structure under Rotational Conditions;Sustainability;2022-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3