Affiliation:
1. Rotating Machinery and Controls (ROMAC) Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, Virginia 22904–4746
Abstract
This paper presents a new computational fluid dynamics (CFD)/bulk-flow hybrid method to determine the rotordynamic characteristics of annular gas seals. The method utilizes CFD analysis to evaluate the unperturbed base state flow, an averaging method to determine the base state bulk-flow variables, and a bulk-flow perturbation method to solve for the fluid forces acting on an eccentric, whirling rotor. In this study the hybrid method is applied to a hole-pattern seal geometry and compared with experimental data and numerical and analytical methods. The results of this study show that the dynamic coefficients predicted by the hybrid method agree well with the experimental data, producing results that are comparable with a full, three-dimensional, transient, whirling rotor CFD method. Additionally, the leakage rate predicted by the hybrid method is more agreeable with experiment than the other methods. The benefit of the present method is the ability to calculate accurate rotordynamic characteristics of annular seals that are comparable to results produced by full, transient CFD analyses with a simulation time on the order of bulk-flow analyses.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献